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A B S T R A C T   

Common marine spatial planning challenges include lack of data on the marine environment, high mobility of both animals and humans, and plan implementation 
challenges including lack enforcement and compliance with regulations along with monitoring deficiencies. These can be potentially addressed using geospatial 
technologies (GTs) such as remote sensing, GPS and GIS. This research presents geospatial tools that are available for the process of developing, implementing, and 
monitoring marine spatial plans. Tools include satellites and water-based platforms carrying various sensors and receivers for environmental ocean data, vessel 
tracking and animal telemetry via multispectral, acoustic, radar, and other means. Planners and ocean managers might not always be aware of technological solutions 
available for the development and implementation of marine spatial plans. Here, urgent planning needs, summarized from various publications, are linked to GTs 
solutions published in relevant literature between the years 2015–2020. The GTs were used for data collection, dynamic human activities’ management, environ-
mental monitoring and enforcement, all as required by marine spatial plans. This paper concludes with insights into GT solutions that can enhance the process of 
evidence-based management and spatial planning in marine environments.   

1. Introduction 

The ecosystem-based management (EBM) approach to ocean man-
agement has been recognized as a leading approach for the management 
of ocean uses; marine spatial planning (MSP) has been recognized 
globally in recent years as a primary tool for implementing EBM 
(Álvarez-Romero et al., 2011; Ansong et al., 2017; Domínguez-Tejo 
et al., 2016; Ehler and Douvere, 2009; Fluharty, 2019; Gilliland and 
Laffoley, 2008). However, achieving the social, economic, and envi-
ronmental objectives of the EBM approach in MSP encounters hardships 
when put into practice (Ansong et al., 2017; Frazão-Santos et al., 2018; 
Tallis et al., 2010). 

The MSP process is data-dependent, yet it faces challenges with re-
gard to data collection because it deals with the ocean and its dynamic 
properties, affecting the distribution of economic, social, biological, and 
oceanographic elements (Dunn et al., 2016; Gazzola et al., 2015; Kidd 
and Ellis, 2012). Fortunately, various recent scientific and technological 
advances have the potential to address these challenges, specifically 
geospatial technologies (GTs) (Fig. 1), which collect or process 
location-associated data (AAAS, 2018). 

This paper discusses how geospatial technologies can enhance MSP 
practices and it indicates at which stage in the MSP process GTs can best 
be used. Ehler and Douvere (2009) divide the MSP process into three 
main parts: pre-planning, planning, and post-planning stages. Since the 

pre-planning stage includes securing authority and funding for the plan 
and is unrelated to the technological solutions offered here, it will not be 
discussed further. In this paper, we discuss the planning stage that re-
lates to a planning team’s data collection efforts aimed at understanding 
existing conditions and to the development stage of a management plan 
designed to accomplish pre-determined goals. The post-planning steps 
we will also discuss are the implementation stages that ensure compli-
ance with and enforcement of the management plan, as well as moni-
toring which is required for evaluating the plan’s success in achieving its 
goals (Ehler and Douvere, 2009). 

Many of MSP challenges commonly reported in literature as 
encountered during the planning and post-planning stages (Table 1) 
could have a potential technological solution (as opposed to a solution 
requiring policy or regulatory change). Some of those specific challenges 
are limited data availability, including limited environmental data 
(Domínguez-Tejo et al., 2016), species distribution (Fabbrizzi et al., 
2020; Katsanevakis et al., 2017; Levin et al., 2014; Rahman et al., 2019; 
Wilson et al., 2009), habitat maps (Bronwyn et al., 2016; Gerovasileiou 
et al., 2019; Giakoumi et al., 2013), bathymetric data (GEBCO Seabed 
2030 Project, 2020; Hell et al., 2012; Levin et al., 2014), and deep-sea 
environment (below 200 m) related data (Danovaro et al., 2017; Gre-
han et al., 2017; Jansen et al., 2018; Thurber et al., 2014). Other chal-
lenges are associated with spatial and temporal ocean dynamics not fully 
included in MSP, exclusion which may result from MSP’s static 
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management approaches to dynamic human uses and fauna, but also 
from lack of full, up-to-date data on these constituents and their distri-
bution, enabling a more spatiotemporal- sensitive approach (Agardy 
et al., 2011; Gissi et al., 2018; Lewison et al., 2015; Martin and 
Hall-Arber, 2008; Stamoulis and Delevaux, 2015; Zaucha and Gee, 
2019). For implementation of MSP, challenges are a lack of effective 
enforcement (Agardy et al., 2011; De Santo, 2013; Ehler and Douvere, 
2009; Policy Research Corporation, 2011; Portman et al., 2013; UNEP & 
GEF-STAP, 2014) (enforcement that could be better targeted with 
improved knowledge of human spatiotemporal activities) and unsatis-
factory monitoring of the marine management plan area (Frazão-Santos 
et al., 2018; Mccann et al., 2014; Policy Research Corporation, 2011; 
Portman et al., 2013; UNEP & GEF-STAP, 2014). 

Geospatial technologies stand out for their potential to address these 
marine planning challenges as they are used to acquire, manipulate, and 
store geographic information (AAAS, 2018; Dempsey, 2014). They 
enable the detection, collection, and analysis of multiple levels of spatial 
data, including physical, chemical, and biological components which 
not only facilitate MSP but align with achieving the sought-after EBM 
objectives, i.e., economic benefits, ecosystem health, conservation, and 
natural resource management (Kirkfeldt, 2019; Martin and Hall-Arber, 
2008). Commonly used GTs are remote sensing, global positioning sys-
tems (GPS), and geographic information systems (GIS) (Fig. 1). Remote 
sensing refers to collecting images and information from afar, including 
not only satellite images but also scanning technologies such as sonars 
used to create seabed maps. GPS are satellite-based geolocation systems 
accessible worldwide to the public (enabling tracking of mobile human 
uses and tagged mobile marine fauna), and GIS enables the creation, 
organization, and presentation of data in a spatially referenced form as 
well as the production of maps and charts. 

Previous papers on geospatial technological solutions do not address 
the complete set of GT tools and for the most part focus narrowly on 
remote sensing (El Mahrad et al., 2020; Fingas, 2018; Hedley et al., 
2016; Ouellette and Getinet, 2016; Verfuss et al., 2019) or on a single 
technology in relation to MSP uses (Le Tixerant et al., 2018; Lee et al., 

2019). Here, we decided to leave GIS and web mapping services out of 
the literature review, since in contrast to other geospatial technologies, 
these types of tools have been widely reviewed in the past for planning 
and for specific MSP needs (Depellegrin et al., 2017; González et al., 
2020; Lathrop et al., 2017; Noble et al., 2019; Shaowen et al., 2019; 
Snickars and Pitkänen, 2007; Stelzenmüller et al., 2013; Trouillet, 
2019); it is the extent to which all other GTs are being used for MSP that 
falls short. This paper aims to show how GT-derived data addresses the 
common limits associated with MSP in each planning stage i.e., for the 
following stages: supporting data collection, developing a spatiotem-
poral change-sensitive plan, enforcing and monitoring the plan. The 
importance of this review focuses on how GTs explicitly address the 
needs of MSP practitioners, planners, and ocean managers by mapping 
important tools available to them, thus promoting planning for scientific 
evidence-based ocean use. 

2. Methods 

2.1. Evidence-based review on geospatial technologies (GTs)that are 
useful for MSP 

We conducted an evidence-based literature review to identify papers 
providing information about which GTs are available and how they are 
used in the marine environment. This type of review looks for evidence 
within the literature on how different GTs and data generated by them 
could assist particular aspects of MSP: for data collection, development 
of a plan that considers spatiotemporal changes, enforcement, and 
monitoring of the plan’s management area. An evidence-based review is 
a transparent, repeatable, objective way to gain insight about the rele-
vant literature (O’Leary et al., 2015). Here, particular aspects (years, the 
number of databases, language) are stipulated in advance thus limiting 
the review and rendering it “rapid”. A rapid evidence-based literature 
review is a useful tool to conduct research in a timely manner. Here, 
mostly, we wanted to limit our search to include only novel technologies 
from the past five years (2015–2020). Such a rapid review is less deep 

Fig. 1. Current geospatial technologies (orange) with common examples (grey). * Global Navigation Satellite System (GNSS), including GPS. ** Dynamic Remotely 
Operated Navigation Equipment (image adapted from https://www.geospatialworld.net/). 
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and does not include everything published on the topic however, we 
considered it efficient for our research goal, since this method summa-
rizes available evidence, highlighting what is already known (Barends 
et al., 2017; Daykin & Creative and Credible Project team, 2015; Grant 
and Booth, 2009; O’Leary et al., 2015), thus providing a firm under-
standing of what technologies exist and are currently in use. Our review 
uses the ISI Web of Science database as its source of information. 

2.1.1. Inclusion and exclusion criteria 
We used the evidence-based review to locate research that presents 

first-hand results (i.e., that produces primary sources of data) with GTs 

used in a manner consistent with MSP’s needs (see Table 1). The reason 
for excluding sources such as reviews and opinions was that we did not 
want to get repetitive results in a manner that those types of sources 
cited other original research (i.e., leading to "double counting") 
(Table 2). 

The search terms were carefully selected after many trials and errors. 
The particular search terms we chose connect GTs and marine-related 
planning activities. As such, queries used to identify GTs included 
either of the terms (or combinations of) “remote sensing, satellite, GPS, 
drone, glider, AIS, VMS” combined with “ma-
rine, maritime, MPA, ocean, sea” and any words containing “plan, fisher, 
manage, monitor” with “biodiversity, conservation, compliance, miti-
gate” and “tech, system, method, evaluate, measure”. We excluded 
terms referring to the integration of coastal landscapes such as river, 
delta, coast, marshes, mangroves because we were interested in identi-
fying exclusively marine activities. We also excluded papers that were 
not published between the years 2015–2020 in order to target the latest 
technologies. 

The method we used for choosing the specific search terms to cover 
as a wide as range of technologies as possible for sectors relevant to MSP 
consisted of using all the search terms and then subsequently removing 
them one by one to assess which search terms were already included or 
addressed by others, thus focusing the search results to the most relevant 
papers. For example, the term “remote sensing” returned papers using 
acoustic monitoring techniques, covering bathymetric mapping needs, 
oil and gas seismic surveys, and passive acoustic monitoring. The term 
“AIS” retuned marine traffic related data, including the shipping, 
tourism, and fisheries sectors. VMS specifically addressed fisheries. 
Aquaculture was addressed in papers using earth observation satellites. 
Similarly, renewables, like wind farms, were not specifically noted in the 
search query since the spatial considerations for their development areas 
are addressed under the rest of the keywords chosen which covered 
displacement of human activities, habitat effects, and collision risks. 

We filtered the search query results (see Fig. 2) by excluding articles 
belonging to irrelevant ISI Web of Science categories (categories 
represent research fields, i.e., categories such as “physics nuclear”, 
“limnology”, “clinical neurology” were excluded from scanned results). 
Then, titles and abstracts were screened, eliminating records irrelevant 
to the topic or that did not involve an empirical approach; empirical 
defined as cases where data was gathered or analyzed primarily by the 
authors (Table 2). Full-text papers remaining were screened and clas-
sified for (1) particular GTs used, (2) purpose, (3) outcome (e.g., suc-
cessfully achieving a specific target), (4) stage of the planning process 
we believe these methods could enhance. Out of the full-text papers 
reviewed, papers were eliminated if they did not use an empirical 
method, GTs were not the primary tool relied on, or if research 

Table 1 
MSP challenges as appearing in the literature.  

MSP Step Common Challenges Source 

Defining and 
analyzing current 
conditions  

• Time-consuming  
• Timeliness of data  
• Lack of data 

Collie et al. (2013) 
(Hobday and Hartmann, 
2006; Shucksmith and Kelly, 
2014; Welch and Mchenry, 
2017) 
(Ban et al., 2010; Bronwyn 
et al., 2016; Buhl-Mortensen 
et al., 2017; Danovaro et al., 
2017; Diaz et al., 2004;  
Domínguez-Tejo et al., 2016;  
Fabbrizzi et al., 2020; GEBCO 
Seabed 2030 Project, 2020;  
Gerovasileiou et al., 2019;  
Giakoumi et al., 2013;  
Grehan et al., 2017; Halpern 
and Fujita, 2013; Hell et al., 
2012; Jansen et al., 2018;  
Katsanevakis et al., 2017;  
Levin et al., 2014; Lombard 
et al., 2019; Rahman et al., 
2019; Thurber et al., 2014;  
Wilson et al., 2009) 

Management plan 
development 

Static zoning inadequate 
for dynamic 
environment 

(Agardy et al., 2011; Corbane 
et al., 2015; Cumming et al., 
2006; Dunn et al., 2016;  
Game et al., 2009; Gazzola 
et al., 2015; Hazen et al., 
2018; Lewison et al., 2015;  
Maxwell et al., 2015, 2020;  
Portman, 2016; Ritchie and 
Ellis, 2010; Siders et al., 
2016; Stamoulis and 
Delevaux, 2015) 

Management plan 
implementation  

• Achieving compliance 
with regulations for 
activities  

• Lack of funds and 
trained personnel 

(Arias et al., 2015; Arias and 
Sutton, 2013; Bergseth et al., 
2017; De Santo, 2013;  
Elvidge et al., 2018; Game 
et al., 2009; Moutopoulos 
et al., 2019; Pieraccini et al., 
2017; Silber et al., 2014;  
UNEP & GEF-STAP, 2014) 
(Ali and Abdullah, 2010;  
Ciminoet al., 2019; Game 
et al., 2009; Garrison and 
Rollinson, 2015; Greenpeace, 
2007; Silber et al., 2014) 

Plan execution 
monitoring and 
evaluation 

Achieving satisfactory 
monitoring of indicators 

(Borja et al., 2016; Christie 
et al., 2017; Douvere and 
Ehler, 2011; Ehler, 2014;  
FAO, 2015; Giakoumi et al., 
2013; Lockhart et al., 2012;  
NOAA, 2003; Policy Research 
Corporation, 2011; Stamoulis 
and Delevaux, 2015; Terrill 
et al., 2015) 

Adaptation of the 
plan 

Rarely been 
implemented, partially 
because of unsatisfactory 
monitoring 

(Collie et al., 2013;  
Domínguez-Tejo et al., 2016;  
Ehler and Douvere, 2009;  
Gissi et al., 2018)  

Table 2 
Eligibility criteria used in guiding this review via the ISI Web of Science 
database.  

Criteria Inclusion criteria Exclusion criteria 

Years 
published 

2015–2020 Published before 2015 

Language English Not English 
Type of 

document 
Published peer-reviewed 
original empirical (first- 
hand results) research 

Review, non-empirical, opinion, 
concept paper, conference 
paper, book chapter, book, 
report (i.e., grey literature), 
short communication, editorial 

Area Marine/Ocean Terrestrial, freshwater, only 
coastal 

Technology Geospatial Not including geospatial tools in 
research as main tool 

Relevance to 
the MSP field 

Relevance to planning, 
managing, conserving, 
monitoring in the marine 
environment   
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conclusions did not show relevance to the planning process. 

3. Results 

3.1. Evidence-based review of geospatial technologies relevant to MSP 

Our review identified papers using GT-derived data that can support 
common MSP challenges (Table 3). We categorized full-text papers 
(n = 280) (Supplementary material A) by the MSP challenge or gap 
addressed by each GT solution. The MSP challenges we addressed were 
(1) gathering and creating baseline data, (2) support of dynamic ocean 
management enabling a more spatiotemporal-sensitive approach to 

managing mobile human uses and mobile marine fauna conservation, 
(3) enforcement of regulations, and (4) enhanced monitoring tech-
niques. Gaps relevant to the adaptation of plans were included in the 
monitoring stage because the adaptation of a marine plan requires 
satisfactory monitoring for proper evaluation of the plan’s success in 
achieving its goals (Ehler and Douvere, 2009). 

Among the papers included in this review, the most prominent topics 
were GT-derived data on the marine environment (such as oceano-
graphic conditions) and human-animal interactions. 

3.1.1. Description of the most commonly used technologies 
Here, the geospatial marine data in the 280 papers selected for this 

review was gathered by various tools, mainly earth observation satellites 
(98 sources), biotelemetry either via acoustic or satellite-linked tags for 
animal tracking (96 sources), vessel tracking (AIS and VMS) (37 sour-
ces), passive acoustic monitoring (acoustic signature recordings of 
geophysical, biological and anthropogenic origins) (33 sources), active 
sonar surveys (21 sources) and autonomous vehicles with various sen-
sors, operating from the air, ocean surface or underwater (15 sources). 
Fig. 3 shows these GTs and the relationship between them. 

In the next six sub-sections we summarize the most common tech-
nologies appearing in the reviewed papers, for the reader to familiarize 
themselves with the type of data provided by each GT tool. Then, we 
give specific examples of when the GT or the GT-derived data is rec-
ommended for the planning and implementation stages. The aim is to 
clearly map out how to best utilize GTs for MSP. 

3.1.1.1. Earth observation (EO) satellites. Satellites orbiting the earth 
gather high-resolution data on a global scale in a repetitive timely 
manner. There are active and passive satellites. Those that are passive 
observe natural radiation such as natural visible and infrared (IR) light 
and passive microwaves. Active satellites have their own illuminating 
energy that they send out as electromagnetic energy and then detect the 
return signal, like radars sending and receiving radio waves. The papers 
included in this review commonly used both active and passive satellite- 
derived data (Earthdata, n.d.). 

Fig. 2. The stages in the evidence-based review, including the number of papers (n) reviewed at every stage.  

Table 3 
MSP step, common challenges encountered by practitioners during that step (See 
Table 1), and the number of papers that use geospatial technological tools 
highlighting a solution to those challenges.  

MSP Step Common Challenges Solution provided by GTs 
(n = number of papers) 

Defining and 
analyzing current 
conditions 

Time-consuming, 
timeliness of data, lack of 
data 

Generating updated 
baseline data (n = 205) 

Management plan 
development 

Zoning as an inadequate 
approach in a dynamic 
environment 

Dynamic ocean 
management supporting 
the refinement of temporal 
and spatial scale of 
managed areas (n = 57) 

Management plan 
implementation 

Achieving compliance with 
regulations for activities, 
lack of funds and trained 
personnel 

Improved enforcement and 
compliance (n = 26) 

Plan execution 
monitoring and 
evaluation 

Satisfactory monitoring of 
indicators 

Enhanced monitoring 
techniques (n = 130) 

Adaptation of the 
plan 

Rarely been implemented, 
partially because of 
unsatisfactory monitoring 

Enhanced monitoring 
techniques (proper 
adaptations are supported 
by better monitoring 
options)  
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Frequent examples of data types collected in a large scale, up-to-date 
manner using remote sensing satellites are sea surface height (SSH), sea 
surface salinity (SSS), and sea surface temperature (SST), as well as 
ocean water color interpreted into chlorophyll-a concentration, sus-
pended solids, and turbidity. These detected oceanic conditions were 
used to identify areas suiting aquaculture, pelagic conditions ideal as 
hotspots for animal gathering or even to assess connectivity between 
habitats. Satellites are also used for classification of shallow benthic 
habitats such as coral reefs and seagrass meadows. Scientists report that 
identifying and monitoring such benthic habitats from space is labor- 
efficient, more precise and offers better coverage than on-the-ground 
methods (Earthdata, n.d.; Guo et al., 2015; Hobday and Hartog, 2014; 
Howell et al., 2008; Liu et al., 2020; Ouellette and Getinet, 2016; 
Schroeder et al., 2019; Smith and Bernard, 2020; Topouzelis et al., 
2018). Visible infrared imaging radiometer suite (VIIRS) satellites detect 
night light and are used for identifying night fishing and for monitoring 
light pollution (Elvidge et al., 2015; Hsu et al., 2019; Ouellette and 
Getinet, 2016). Synthetic aperture radar (SAR) satellites detect objects 
on water surfaces such as ships. While SAR cannot penetrate the water 
surface as visible light does, it uses an active microwave sensor (radar 
signals), and therefore provides 24-h observations independent of light 
or good weather (Maurer, 2002; Ouellette and Getinet, 2016; Rowlands 
et al., 2019). 

3.1.1.2. Animal biotelemetry. In biotelemetry, wildlife is tagged with a 
device that records and transmits data to remote stations, commonly 
through satellites or acoustic signals picked up by receivers. Satellite 
communication tags are mostly used on air-breathing fauna and acoustic 
tags on water-breathing fauna. The latter requires a sensor to receive the 

data, either a static one around an area of interest or a mobile one (i.e., 
on a vessel) following the signal (less common). The tags report animal 
locations, and movement is recorded without human interference or 
disturbance. Tags are available at various prices and sizes, making them 
a popular research tool. The tags can record environmental conditions 
(wind direction, current velocity, temperature, salinity, chlorophyll 
concentration) along with death or behavior such as swimming, feeding, 
diving, or flying. Data is provided from remote areas, great depths, or 
over long periods, allowing for time-space analysis for highly mobile 
fauna (Briscoe et al., 2016; Cazau et al., 2017; Edwards et al., 2019; 
Harcourt et al., 2019; Heylen and Nachtsheim, 2018; Jeantet et al., 
2018; Maxwell et al., 2016). 

Telemetry data reveal foraging habitats (Lombard et al., 2019; Stokes 
et al., 2015), spatial uses according to different life stages (Luschi and 
Casale, 2014; Pütz et al., 2016; Scott et al., 2012), main movements and 
migratory corridors, and even lack of the need for specific gathering 
spots or discernible home range which enables other less 
space-consuming management strategies (Hart et al., 2019; Oksanen 
et al., 2015; Stokes et al., 2015). Species distribution predictions used for 
conservation and fishery purposes are based on a link between envi-
ronmental data and tagged species distribution (Bangley et al., 2020; 
Pérez-Jorge et al., 2020; Scales et al., 2017; Van Beest et al., 2018). 
Telemetry data allows for more accurate and fitting delimitations of 
conservation areas (Daley et al., 2015; Lea et al., 2016; Levy et al., 2017; 
Rowell et al., 2015). Crossing telemetric data with vessel-tracking data 
offers understandings of human-animal interactions (Pikesley et al., 
2018; Queiroz et al., 2019; Sommerfeld et al., 2016; White et al., 2017). 
By looking into horizontal and vertical factors detected by telemetry, 
conflicts and compatibilities with fisheries are revealed, allowing more 

Fig. 3. Common geospatial technologies used in the 280 papers included for this review: (1) navigation satellite (2) communications satellite (3) remote sensing 
satellite (4) satellite ground station (5) automatic identification system (6) satellite biotelemetry (7) vessel monitoring system for fisheries (8) real-time passive 
acoustic (9) autonomous underwater vehicle (glider) (10) acoustic biotelemetry (11) passive acoustic recording of the soundscape (12) sonar. (Figure credit: 
Dana Schwartz). 
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options for management measures (specific gear, depth, temporal re-
quirements) to tackle these spatiotemporal overlaps (Bestley et al., 
2016; Francis et al., 2015). 

3.1.1.3. Vessel tracking systems (VMS/AIS). Vessel tracking data used in 
the review papers are based on the technologies called Vessel Moni-
toring System (VMS) and Automatic Identification System (AIS). VMS is 
a system operating only in commercial fisheries sectors for reporting 
fishing vessels’ identity, location, and movement to the fisheries’ regu-
latory authority in the country. Each fishery authority operated its own 
VMS system and the VMS data is confidential, to protect commercial 
fishers’ fishing grounds from other fishers. Vessel monitoring systems 
usually only sends a location signal once every 1–2 h. Unlike VMS, the 
on-board AIS is an anticollision system which is not exclusively used by 
fishery management organizations but rather by any vessel that installs 
it for safety. The AIS messages are sent every 2 s to 3 min, depending on 
the specific maneuver or speed of the vessel and these signals are picked 
up by any AIS receptor within VHF radio range (receivers on other ships 
(ship-to-ship) and land-based receiving stations (ship-to-shore). AIS data 
includes the vessel’s identity, position, course, and speed, and is publicly 
available for analyzing or tracking historical or real-time vessel 
movements. 

Newer technology enables the detection of AIS signals from satel-
lites. When satellites detect AIS signals, these are referred to as Satellite- 
AIS (S-AIS). The benefit of S-AIS signals detection is that they reach 
beyond VHF range, exposing former blind spots of land-based stations 
tracking vessels through AIS signals. The International Maritime Orga-
nization (IMO) requires that all ships over 300 gross tons engaged on 
international voyages, cargo ships over 500 gross tons not engaged on 
international voyages, and all passenger ships irrespective of size to be 
fitted with AIS (IMO, 2015). The European Commission requests fishing 
vessels 12 m and above to install a VMS and over the size of 15 m to also 
install AIS (European Commission, n.d.; Natale et al., 2015; “Satellites 
for safer seas,” n.d.; Schill, 2015). Since vessel tracking systems monitor 
human activities, the location data allows assessment of compliance 
with different spatial regulations. Conflicts and compatibilities with 
other human uses and environmental disturbances can be identified 
from vessel tracking data (Chuaysi and Kiattisin, 2020; Silber et al., 
2014; van der Reijden et al., 2018). For example, assessment of the 
extent of overlap between marine fauna habitats and fisheries or marine 
traffic (Guzman et al., 2020; Pikesley et al., 2018; White et al., 2019). 

3.1.1.4. Active sonar (SOund NAvigation and Ranging). Active sonar 
sends out acoustic waves and then detects and analyses the returning 
signal, unlike passive sonar which only detects acoustic sounds omitted 
from the environment. By actively omitting sound waves, the acoustic 
location of targets is detected, including measurement of the target 
characteristics (NOAA, n.d.). Through a method known as echo sound-
ing, an acoustic signal is sent directly down toward the seabed and 
depending on the time lapsed for its return, water depth is measured. 
Similar tools can characterize sea bottom types (gravel, sand, mud) 
(Boswarva et al., 2018). Acoustic surveys are common tools for habitat 
investigation and are critical for habitat mapping (Heinrich et al., 2017), 
which in turn can act as a proxy for data on biodiversity (Corbane et al., 
2015). 

Active acoustics are also used for detecting nekton and are widely 
used by the fishing industry to detect fish underwater (Cholewiak et al., 
2017). Commercial sonars operate at different frequencies and beam 
spans depending on their operational target. Many commercial sonars 
operate well within cetacean hearing ranges, suggesting that anthro-
pogenic disturbances for scientific and industrial purposes require 
careful consideration. Since active sonar is a disturbance, acoustic pings 
are also used to deter dolphins from fishing nets (Clay et al., 2019). 
Passive acoustic monitoring of fish has been suggested to estimate fish 
populations instead of active sonars (Hossain and Hossen, 2019). 

3.1.1.5. Passive acoustic monitoring (PAM). The presence and activities 
of many animals emit acoustic signals (Gibb et al., 2019). Recording 
acoustic signals is a relatively cheap method for collecting data on the 
sound sources in the marine environment (Lindseth and Lobel, 2018; 
Parks et al., 2014). PAM is an ecosystem-based approach for assessing 
long-term changes in community abundance, richness, health, and di-
versity, primarily based on the aural identification of species (the sounds 
they emit). This approach is very popular in bioacoustic studies for 
targeted monitoring of focal species. Targeted research on specific ani-
mal sounds allows detection of seasonal habitat presence, the overtime 
complexity change in fish population, and reproductive cycles (Charif 
et al., 2020; Farina, 2018; Lindseth and Lobel, 2018; Siddagangaiah 
et al., 2019; Zemeckis et al., 2019). Marine mammals are commonly 
surveyed visually from ships, yet acoustic monitoring decreases bias 
since visual surveys are usually performed when there is good weather 
and cannot quantify deep water foraging (Baumgartner et al., 2019; 
Davis et al., 2017; Diogou et al., 2019; Giorli et al., 2016; Putland et al., 
2018; Silva et al., 2019). 

Soundscapes are a more holistic approach to acoustically describing 
a habitat. Instead of focusing on specific specie-emitted sounds, passive 
ecoacoustic monitoring (PEM) detects acoustics from physical parame-
ters emitted from all environmental origins, not just biological ones but 
also geophysical (wind, waves, rain) and human sources. Soundscapes 
can compare between habitats (e.g., inside or outside of a marine pro-
tected area (MPA)) or over time at the same location (Bertucci et al., 
2016; Desiderà et al., 2019; Farina, 2018; Pijanowski et al., 2011; Roca 
and Van Opzeeland, 2020). Ecoacoustics assesses deep water fish 
abundance and biodiversity, and habitat health, such as coral coverage. 
Acoustic monitoring is considered time-efficient, from individual species 
to landscapes, reflecting general ecosystem properties and ecological 
functioning over time and space (Akamatsu et al., 2018; Butler et al., 
2017; Elise et al., 2019; Elise et al., 2019; Farina, 2018; Freeman and 
Freeman, 2016; Putland et al., 2018). 

Acoustic recordings also enable noise detection from anthropogenic 
activities, such as marine traffic or seismic surveys (Enguix et al., 2019). 
Vessel acoustic detection methods are, among other uses, designed to 
assess high-risk areas, such as detecting vessels fishing inside no-fishing 
zones (Kline et al., 2020) and for impact assessment of activities 
generating intrusive anthropogenic-origin noise. Anthropogenic-origin 
noise is harmful to many species’ well-being, including marine mam-
mals, fish and turtles. A better evaluation of the impact of noise, such as 
from shipping, is achieved when vessel tracking data (as AIS) is coupled 
with vessel sound recordings in areas of interest (Gaggero et al., 2015; 
Rousset et al., 2016). 

3.1.1.6. Unmanned air and sea vehicles. Unmanned platforms carry so-
nars, hydrophones for recording sound, cameras, or sensors for envi-
ronmental data recordings. These platforms enable data gathering with 
lower costs for manpower and equipment and can be GPS-guided 
(Baumgartner et al., 2020; Brooke et al., 2010; Dunlop et al., 2018; 
Edwards et al., 2019; Maxwell et al., 2016; Pierdomenico et al., 2015). 
Aerial unmanned vehicles are used to count remote populations in a 
non-invasive way (Babatunde et al., 2020; Oosthuizen et al., 2020). 
Unmanned surface and underwater vehicles such as gliders equipped 
with hydrophones record and identify marine mammal communications 
and can monitor and alert the location of wildlife, some in near real-time 
(Aniceto et al., 2020; Baumgartner et al., 2020; Davis et al., 2016; Silva 
et al., 2019; Zemeckis et al., 2019). 

The above reviewed GTs enable data detection from afar while 
complementing ground-truthing methods used today. While not the only 
method for data collection, GTs provide data that is accurate, varied in 
scale, and fits different marine environments. Through the use of these 
technologies, policies that rely on such marine ecological and social data 
could be more accurate and inclusive (SEDAC, n.d.). 
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3.2. Recommended use of geospatial technologies for marine spatial plan 
development and implementation 

In this section, the reviewed literature is organized to show how to 
best utilize GTs for informed decision making and management. End- 
user needs are highlighted in Table 4 through 7 and then linked to the 
papers showcasing each technology. The tables show how some of the 
more common MSP gaps could be addressed using GTs. Table 4 high-
lights GTs that aid in collecting data on the marine environment and of 
human uses and suggests which of those technologies could also be used 
for monitoring these environments and uses. Some papers utilize exist-
ing data and cross different GT derived data to assemble new insights, 

other papers use GTs to create new data by gathering it themselves. 
Table 5 highlights GTs that support data collection for more flexible 
management approaches, in time and space, and suggest which of those 
GTs are relative also for baseline data gathering. Table 6 highlights GTs 
that support enforcement by surveilling human uses at areas requiring 
compliance with existing regulations and suggests which GTs have other 
added uses (such as for data gathering and monitoring). Table 7 high-
lights GTs that are useful for monitoring goodness of fit of newly allo-
cated conservation areas, success of mitigation activities, and also of 
targeted habitats and species’ current condition in specific human 
impacted areas. 

Table 4 
Sources on geospatial technologies derived data that can be used for baseline data gathering. DOM (Dynamic Ocean Management).   

Use Technology 
type 

Example References Added use 

Defining and 
analyzing current 
conditions: 
Baseline data 

Detection of areas for 
specific human use 

EO Satellites Choosing areas for aquaculture that are less 
susceptible to risk and identifying aquaculture 
use areas 

(Liu et al., 2020; Smith and Bernard, 2020) Monitoring 

Ice patterns in the arctic to determine access to 
hunting grounds for indigenous people 

(Lovvorn et al., 2018) Monitoring 

Spatial conflict/compatibility between humans 
and mobile fauna 

(Hutchinson et al., 2019; Kowarski et al., 
2018) 

Monitoring 

AIS/VMS Spatial and temporal seasonal variability of 
fishing effort, identifying fishing grounds 

(De Souza et al., 2016; Le Guyader et al., 
2017) 

Monitoring 

Vessel pressure (Omeyer et al., 2020)  
AIS + EO 
Satellites 

Predicting suitable fisheries pelagic habitats on 
the high seas 

(Crespo et al., 2018)  

Active acoustic 
survey (sonar) 

Distribution and abundance of krill (Davis et al., 2017; Niklitschek and Skaret, 
2016) 

Monitoring 

Passive 
acoustics 

Estimate the extant of human pressure in an area 
using underwater microphones (hydroacoustic) 
recording anthropogenic origin sounds 

(Andre et al., 2016; Chan and Hodgson, 
2018) 

Monitoring 

Telemetry Detecting megafauna conflict with vessels (Hutchinson et al., 2019)  
Telemetry +
AIS/VMS 

Detecting megafauna conflict with vessels (Lucchetti et al., 2016; Pérez-Jorge et al., 
2020) 

Monitoring 

Defining and 
analyzing current 
conditions: 
Baseline data 

Detection of 
important 
conservation 
management areas 

Telemetry Connecting highly mobile animal spatial 
movements to predictive marine environment 
conditions, seasonal habitat suitability maps, 
dynamics of space use and horizontal 
movements 

(Duffy et al., 2019; Hutchinson et al., 2019;  
Pérez-Jorge et al., 2020; Scales et al., 2016;  
Van Beest et al., 2018) 

Monitoring 
and DOM 

Matching MPAs’ borders with mobile animal 
movements and identifying hotspots for 
conservation 

(Dujon et al., 2018; Hart et al., 2019;  
Honda et al., n.d.; Javed et al., 2019;  
Martín et al., 2020; Queiroz et al., 2020;  
Venables et al., 2020; Weng et al., 2015) 

Monitoring 
and DOM 

Need for movement and migration corridors (Hart et al., 2019; Horton et al., 2017;  
Stokes et al., 2015)   

Adding depth data to understand habitat 
requirements 

(Bestley et al., 2016) Monitoring 

Passive 
acoustics +
Telemetry 

Spatial and temporal distribution of fish 
spawning 

(Rowell et al., 2015; Zemeckis et al., 2019) Monitoring 

Passive 
acoustics 

Overlap of protected species with fisheries (Prosdocimi et al., 2021) Monitoring 
Foraging and breeding areas of marine mammals (Carlén et al., 2018; Giorli et al., 2016;  

Temple et al., 2016) 
Monitoring 

Telemetry +
VMS 

Overlap of protected species with fisheries (Queiroz et al., 2016) Monitoring 

EO Satellites Habitat classification: 
Pelagic habitats and connectivity 

(Crochelet et al., 2016; Davis et al., 2017;  
Muñoz et al., 2015)  

Defining and 
analyzing current 
conditions: 
Baseline data 

Mapping important 
biological and 
ecological areas 

EO Satellites Estimating kelp biomass (Tin et al., 2020) Monitoring 
Habitat classification: 
Benthic habitat mapping: reef, kelps, seagrass 

(Eugenio et al., 2017; Iqbal et al., 2019; Li 
et al., 2020; Pearman et al., 2020;  
Schroeder et al., 2019; Traganos et al., 
2017; Traganos and Reinartz, 2018b, 
2018c)  

Active acoustic 
surveys (sonar) 

3D complexity of coralline algae (Coralligenous) 
reefs 

(Marchese et al., 2020) Monitoring 

Distribution and abundance of Krill (Watkins et al., 2016) Monitoring 
Passive 
acoustics 

Assessing biodiversity, richness, and abundance 
through soundscape indices 

(Elise et al., 2019; Elise et al., 2019;  
Hossain and Hossen, 2019; Roca and Van 
Opzeeland, 2020; Siddagangaiah et al., 
2019) 

Monitoring 

Mobile fauna temporal distribution (Diogou et al., 2019; Erbeet al., 2015;  
Kowarski et al., 2018; Temple et al., 2016) 

Monitoring  
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4. Discussion and conclusion 

Geospatial technologies-derived data can be effective in helping 
practitioners and stakeholders recognize, manage and operationalize 
informed marine management. Initially, we addressed common MSP 
challenges encountered during marine spatial plan development and 
implementation stages; those challenges were lack of baseline data, 
static management for dynamic conditions, lack of enforcement of reg-
ulations, and unsatisfactory monitoring. The information provided in 
Tables 4–7 indicates how available geospatial tools could be used to 
support these MSP-related challenges. The papers cited show how GT 
and GT-derived data were used for collecting new data on the marine 
environment including on mobile fauna and human uses, and they show 
how this data could be of use to better allocate areas for certain activities 
by a marine plan. They also indicate how to incorporate spatiotemporal 
changes within the plan, counter regulation violators, and monitor a 
management plan’s outcomes. This paper can assist practitioners in 
selecting appropriate GT-derived data to conduct marine spatial plan-
ning in their own jurisdictions and overcome some of the challenges 
mentioned above. 

The first of four challenges we addressed was the lack of baseline 
data to assess existing conditions within the marine plan’s scope. The 

GTs that were linked to baseline data gathering show a high contribution 
to conservation management. Such contributions include habitat 
detection and support the ability to match highly mobile marine fauna 
movements to protected or managed areas based on tagged animals’ 
locations, predictive environmental conditions, and passive acoustic 
monitoring. This spatial “matching” supports allocated areas within a 
spatial plan such as MPAs, migration corridors, and core seasonal hab-
itats where a high number of species occur in conjunction with human 
uses. Other papers indicate how telemetric or acoustic data could be 
used to find new conflicts and compatibilities between megafauna and 
dynamic human activities such as shipping or seismic exploration 
(Table 4). As for fishing grounds, even without relevant stakeholder 
participation and the sharing of information, active fishing grounds can 
be detected using different combinations of vessel tracking systems with 
satellite-derived data (Table 6). This type of area-use detection would 
allow planning for displacement effects if needed, for example, when 
fishing grounds overlap with planned offshore windfarms (Janβen et al., 
2018). 

When data gaps occur, planners might need new specific data to 
cover the gaps. In some countries, like Germany and Spain, the approach 
is to assemble and work with available data. This usually means using 
data created for purposes other than MSP, thus working along with data 

Table 5 
Sources indicating dynamic ocean management (DOM) capabilities.   

Use Technology type Example References Added use 

Development of a management 
plan: Dynamic Ocean 
Management (DOM) 

Dynamic delimitation of 
conservation areas or management 
strategies for highly mobile species 

EO Satellites Predicting bycatch events using 
oceanographic conditions 

(Hahlbeck et al., 2017)  

Telemetry Matching MPAs’ borders to 
highly mobile animal 
movements 

(Bangley et al., 2020; Lea 
et al., 2016) 

Baseline data 
gathering and 
monitoring 

Migratory routes (Hart et al., 2019; Horton 
et al., 2017)  

Telemetry + EO Distribution of highly migratory 
species and habitat preferences 

(Hazen et al., 2018;  
Pérez-Jorge et al., 2020) 

Baseline data 
gathering 

Telemetry + AIS Identifying high-risk areas for 
mega fauna 

(Panigada et al., 2017) Baseline data 
gathering 

Seasonal closure Telemetry +
passive acoustics 

Spawning sites (Rowell et al., 2015) Baseline data 
gathering 

Human-animal interactions Passive acoustics Real-time alert on marine 
mammals’ presence near boats 
to prevent collisions 

(Brunoldi et al., 2016; Davis 
et al., 2016; Reis et al., 
2019) 

Baseline data 
gathering and 
monitoring 

Telemetry + AIS 
+ EO Satellites 

Fisheries and protected species 
overlap. Time-area closure needs 

(Queiroz et al., 2019) Baseline data 
gathering 

Telemetry Dynamic relationship with 
fisheries and fish stocks 

(Kindt-Larsen et al., 2016;  
McInnes et al., 2019; Sherley 
et al., 2017) 

Baseline data 
gathering  

Table 6 
Sources indicating geospatial technologies use for enhancing compliance and enforcement at sea.   

Use Technology type Example References Added use 

Plan implementation: 
Enforcement and 
compliance 

Compliance with 
regulation 

AIS/VMS Compliance with slow zone to 
reduce whale-vessel strike risk 

(Guzman et al., 2020)  

Compliance with conservation 
area regulations/no trawl area 

(Tassetti et al., 2019; Thoya 
et al., 2019) 

Baseline data 
gathering, monitoring 

Detecting anomalous vessel 
behavior/indicators of IUU 
Fishing 

(Chuaysi and Kiattisin, 2020;  
Ford et al., 2018; Miller et al., 
2018)  

Vessel alert system to promote 
compliance with MPAs 

(Read et al., 2019)  

EO Satellites: 
Visible Infrared Imaging 
Radiometer Suite (VIIRS) 

Nighttime fishing detection (Elvidge et al., 2015, 2018) Baseline data 
gathering, monitoring 

EO satellite SAR (Synthetic 
Aperture Radar) + AIS 

Detecting ‘dark’ targets and 
unregulated activities 

(Kurekin et al., 2019; Rowlands 
et al., 2019)  

Telemetry Targeting patrol efforts against 
IUU to high-risk areas 

(Jacoby et al., 2020) Baseline data 
gathering and 
monitoring 

Passive acoustics Vessel presence detection (Chan and Hodgson, 2018; Reis 
et al., 2019; Ross et al., 2018) 

Baseline data 
gathering  
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gaps and creating strategic plans, providing guidance about the collec-
tion of specific data at a later time (BSH, 2021; "Maritime Space Man-
agement Plans", 2020; UNESCO-IOC/European Commission, 2021). 
Others, namely the Massachusetts Ocean Management Plan delegate 
resources for collecting specific missing data using various suitable GTs 
(2021 Massachusetts Ocean Management Plan - Volume 2 - Baseline 
Assessment and Science Framework, 2021). The new UNESCO MSPglobal 
guide (UNESCO-IOC/European Commission, 2021) states that planners, 
policy and decision-makers should have a clear view of what type of 
MSP is developed since it will affect plan development including the set 
objectives and indicators. Therefore, if the planning system in the 
country promotes strategic plans and practitioners are satisfied with the 
data available along with the data gaps, they can go ahead with a more 
indicative plan (lacking direct requirements); yet if a very detailed 
planning is required, it is clear that GTs are efficient for timely and 
precise data gathering for plan development, and support measurable, 
comparable, scientific, plan indicator monitoring (UNAIDS, n.d.). 

Geospatial technologies gather MSP-related data which also includes 
the third and fourth dimensions (depth and time). Thus, potentially, 
effective data gathering technologies allow for more spatiotemporal 
change-sensitive plans to be developed by enabling the refinement of 
temporal and spatial scale of managed areas even within the plan’s 
timespan. Today, MSP struggles even to include the depth element (third 
dimension) and plans are mostly in 2D (Levin et al., 2018; Wahle et al., 
2020). The temporal aspect (fourth dimension) which could lead to 
dynamic ocean planning and management is even rarer to encounter in 
marine plans (Gissi et al., 2018). Dynamic ocean management has been 
suggested years ago (Dunn et al., 2016; Hazen et al., 2018; Hobday, 
Maxwell, Forgie and McDonald, 2013; Lewison et al., 2015; Maxwell 

et al., 2015) and is most similarly applied by fisheries and shipping 
management (Hobday, Hartog, Spillman and Alves, 2011; Hobday, 
Hartog, Timmiss and Fielding, 2010; Lewison et al., 2015; Lomonico 
et al., 2021; Silber et al., 2014). Flexible management measures applied 
by these sectors offer ways for lowering bycatch and unwanted 
man-animal interaction (Hazen et al., 2017; McInnes et al., 2019; Siders 
et al., 2016; White et al., 2019). Introducing spatiotemporal change 
aspects into marine plans (i.e., flexible management measures) will 
require robust timely data to rely on, such as the data GTs offer (Tables 5 
and 6). Some of the technologies presented support dynamic manage-
ment with long- and short-term spatial-temporal measures, meaning 
more potential compatibilities between spatial needs. For example, 
traffic lanes that are intensely used could have negative environmental 
effects (noise, oil spill), yet there are serious economic and ecological 
costs and effects also to rerouting (fuel costs, new habitat disruption) 
(Conflict fiche 4: Maritime transport and area-based marine conserva-
tion, 2019). Deciding to remain with existing traffic lanes that overlap 
with whale population require speed reduction zones to avoid ship 
strikes. Depending on whale presence and density, the slow down zone 
may be changed seasonally or in other areas a real-time detection and 
warning to vessels might be more suitable. This is because it causes less 
delay to the shipping industry and can achieve a balance between eco-
nomic costs and whale conservation (Lewison et al., 2015; Hazen et al., 
2017; Reimer et al., 2016). Furthermore, incorporating more 
spatiotemporal-explicit data in MSP might also help strengthen the link 
between fisheries management and MSP (Janβen et al., 2018). Fisheries 
ocean-usage change in time and space, including depth; by including 
these spatiotemporal refinements in MSP some existing conflicts 
encountered in the fisheries sector between it and other sectors and with 

Table 7 
Sources using geospatial technologies to monitor proposed indicators or targets.   

Use Technology type Example References Added use 

Monitoring Goodness of fit- Delimitation of 
conservation areas 

Telemetry Are MPAs’ effectively located/fitting 
for highly mobile fauna 

(Daley et al., 2015; Lea et al., 2016; Paiva 
et al., 2015; Snape et al., 2018) 

Baseline data 
gathering and 
DOM 

Passive acoustic Comparing inside and outside 
conservation areas 

(Bertucci et al., 2016)  

Assessing fish stock abundance: 
species identification 

(Allken et al., 2019)  

Spatiotemporal distribution of marine 
mammals 

(Davis et al., 2017)  

Monitoring species of interest and 
conservation management 
assessment 

Passive acoustics Comparison of habitats to themselves 
over time or comparison to other 
habitats 

(Akamatsu et al., 2018; Borker et al., 2020; 
Carriço et al., 2020; Elise et al., 2019)  

Habitat monitoring: 
Environmental monitoring 
including anthropogenic effects 

Passive acoustics 
+ AIS 

Impact of cruise ships in marine 
mammal sanctuaries 

(Roca & Van Opzeeland, 2020) Baseline data 
gathering 

AIS/VMS Risk from vessels for marine mammals (Coomber et al., 2016)  
EO satellites Change in seagrass coverage (Traganos & Reinartz, 2018a, 2018b) Baseline data 

gathering 
Detecting reef areas more susceptible 
to bleaching 

(Genevier et al., 2019) Baseline data 
gathering 

Active acoustic 
surveys (sonar) 

Change in benthic coverage (Heinrich et al., 2017; Sonoki et al., 2016)  
Seabed alterations (Heinrich et al., 2017)  

EO satellites Harmful algal blooms (Gokul et al., 2019; Smith and Bernard, 
2020; Ye et al., 2019; Zhao et al., 2016) 

Baseline data 
gathering 

Monitoring Mitigation Passive acoustics Anthropogenic origin noise (Estabrook et al., 2016; Folegot et al., 
2015) 

Baseline data 
gathering 

Risk mitigation impacts of seismic 
surveys on marine mammals 

(Abadi et al., 2017; Banda and Blondel, 
2016) 

Baseline data 
gathering 

Monitoring endangered species and 
habitat management 

(Jaramillo-Legorreta et al., 2017; Smith 
et al., 2020) 

Baseline data 
gathering 

Effectiveness of bycatch mitigation 
measures 

(Hahlbeck et al., 2017; Omeyer et al., 
2020) 

Baseline data 
gathering 

Telemetry Fisheries mitigation: Using temporal 
restrictions 

(Francis et al., 2015) Baseline data 
gathering and 
DOM 

Fisheries effects on sea birds, sharks (Byrne et al., 2017; Collet et al., 2015;  
Sommerfeld et al., 2016; Waugh et al., 
2016) 

Baseline data 
gathering and 
DOM  
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conservation needs might be resolved. 
Other management needs such as assuring compliance and enforce-

ment of regulations can be enhanced by the use of geospatial technol-
ogies, thus implementing MSP strategies. For example, conservation in 
MPAs could be enhanced by better targeted enforcement based on GT- 
derived data. The activities presented in the papers (Table 6) use 
acoustic traps to identify high-risk pelagic areas, algorithms analyzing 
AIS data that interpret fisheries activities with a higher temporal reso-
lution than VMS, VIIRS satellites detecting nighttime lighting used by 
fishers, and SAR satellites that show vessels that turn off their AIS to 
avoid detection. 

There are some limitations to GT technologies we can imagine in this 
context, such as data management issues (Shaowen et al., 2019; Breunig 
et al., 2020). No doubt that targeted patrols based on GT data analysis 
can save on resources and discourage noncompliance(Clark and Hum-
phreys, 2020; Rowlands et al., 2019; Thiault et al., 2020) yet, enforce-
ment agencies will need to consider that by implementing too many 
technological tools, they might be overwhelmed with the amounts of 
data needing storage and analysis. Investing in data analysis requires 
more manpower, software and time and may lead to too many 
noncompliance alerts to handle (Lee et al., 2019; Hsu et al., 2019; 
Breunig et al., 2020). Each enforcement agency will have to select the 
type of tool that can address most of their human uses, while still suiting 
capabilities, resources and prosecution requirements. For instance, the 
UK introduced a new GT called I-VMS to surveille small scale fishing 
activities via cellular reception because regular VMS installed on vessels 
larger than 12 m as required by law covered only 17 percent of the 
fishing fleet (“Inshore Vessel Monitoring (I-VMS) for under-12m fishing 
vessels registered in England,” 2022; Vaughan, 2017). Australian 
enforcement agencies operate at very large scales of sea, and prefer 
preventing violations in real time rather than going out with patrol to try 
and catch the violators in the act (Read et al., 2019). Yet if prosecution 
requires catching violators in-the-act, a predictive policing strategy, 
analyzing past violation data to target high risk areas with patrols might 
be more suited (Cimino et al., 2019; Clark and Humphreys, 2020; 
“Predictive Analytics to Forecast Illegal Fishing Risk in Mexico,” 2020). 

Monitoring of pelagic and benthic habitat change could be enhanced 
using earth observation satellites or acoustics. Earth observation satel-
lites can detect changes in habitats such as seagrass coverage and den-
sity, and soundscape acoustics allow for a quick estimate of change in 
habitat health, biodiversity abundance and richness, and anthropogenic 
pressure. The soundscape compares between different areas (e.g., inside 
and outside MPAs) or over time at the same habitat. Acoustic or satellite- 
based telemetry can assess change in the goodness-of-fit between mobile 
marine fauna and designated conservation areas and aid in decisions to 
adapt management area borders. The GTs presented (Table 7) support 
efficient monitoring, meaning the technologies exist and require moni-
toring programs to keep up with developments and plan data gathering 
and management accordingly. 

Data management and analysis skills are essential for MSP (Flynn 
et al., 2020; Stamoulis and Delevaux, 2015). As mentioned previously, 
the anticipated challenges of using more GT-derived data are storage, 
analysis, and matching scales and databases (Breunig et al., 2020). 
Funding for building a database will be required as a part of the basic 
MSP process as more data is collected and generated (Li and Jay, 2020; 
UNESCO-IOC/European Commission, 2021). Countries, especially those 
who might have common interests such as EU countries, nations that are 
part of an archipelago such as the Eastern Caribbean countries, or share 
ecosystems such as the Benguela Current Convention countries, could 
consider developing a common database, which would save time and 
money for future plan adaptations. This would lead to more data sharing 
advantages, such as comparing environmental surveys data and fisheries 
data more accurately and would advance transboundary cooperation (Li 
and Jay, 2020). 

Regarding MSP as a policy tool (UNESCO-IOC/European Commis-
sion, 2021) and the GT and their derived data as “science”, the lack of 

communication between scientists and policymakers (i.e., the 
science-policy gap) is demonstrated here, highlighting the importance 
and need for this type of research. Our evidence-based literature review 
highlights that out of the 652 records screened for titles and abstracts, 
about half mentioned management, conservation, or monitoring 
(n = 349, 323 and 214 records, respectively), yet planning was noted 
only in 170 records suggesting a lack of desired affinity between tech-
nology use and planning. We have a few assumptions about why marine 
spatial planners and operational marine managers might not be using 
the best available technology. Some might not be aware of all 
GT-derived data available to them; others may consider them unaf-
fordable or inaccessible in their country. Regulations may be too slow to 
keep up with the newest technologies, or entities owning the data may 
be unwilling to share it. Either way, the science is limited in its support 
of policy (MacDonald et al., 2016; Rumson et al., 2017; Winterfeldt, 
2013), as the gaps summarized in this paper also indicate. Beyond 
familiarizing practitioners with technologies as we have done here, 
specific case studies are needed to determine the barriers to enhancing 
GT use. 

Understanding how to optimize the use of GT-derived data is critical 
for improving MSP and for operationalizing ecosystem-based marine 
management in particular. Looking into the common challenges in MSP 
suggests further research should aim at creating enhanced methodolo-
gies in greater detail for integrating technologies into the MSP process. 
Preferably, the role of GTs (data and tools) would be addressed by 
responsible agencies through their management policies. 
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Rowell, T.J., Nemeth, R.S., Schärer, M.T., Appeldoorn, R.S., 2015. Fish sound production 
and acoustic telemetry reveal behaviors and spatial patterns associated with 
spawning aggregations of two Caribbean groupers. Mar. Ecol. Prog. Ser. 518, 
239–254. https://doi.org/10.3354/MEPS11060. 

Rowlands, G., Brown, J., Soule, B., Boluda, P.T., Rogers, A.D., 2019. Satellite surveillance 
of fishing vessel activity in the ascension island exclusive economic zone and marine 

protected area. Mar. Pol. 101, 39–50. https://doi.org/10.1016/j. 
marpol.2018.11.006. 

Rumson, A.G., Hallett, S.H., Brewer, T.R., 2017. Coastal risk adaptation: the potential 
role of accessible geospatial Big Data. Mar. Pol. 83, 100–110. https://doi.org/ 
10.1016/J.MARPOL.2017.05.032. 

Satellites for safer seas. Retrieved August 7, 2020, from. https://www.esa.int/Applicati 
ons/Telecommunications_Integrated_Applications/Satellites_for_safer_seas. n.d.  

Scales, K.L., Miller, P.I., Ingram, S.N., Hazen, E.L., Bograd, S.J., Phillips, R.A., 2016. 
Identifying predictable foraging habitats for a wide-ranging marine predator using 
ensemble ecological niche models. Divers. Distrib. 22 (2), 212–224. https://doi.org/ 
10.1111/DDI.12389. 

Scales, K.L., Schorr, G.S., Hazen, E.L., Bograd, S.J., Miller, P.I., Andrews, R.D., et al., 
2017. Should I stay or should I go? Modelling year-round habitat suitability and 
drivers of residency for fin whales in the California Current. Divers. Distrib. 23 (10), 
1204–1215. https://doi.org/10.1111/ddi.12611. 

Schill, N., 2015. Should I track global fishing activity with VMS or AIS? Retrieved June 
14, 2020, from. http://blog.exactearth.com/blog/should-i-track-global-fishing-activ 
ity-with-vms-or-ais. August 4.  

Schroeder, S.B., Dupont, C., Boyer, L., Juanes, F., Costa, M., 2019. Passive remote sensing 
technology for mapping bull kelp (Nereocystis luetkeana): a review of techniques 
and regional case study. July 1 Global Ecol. Conservat.. https://doi.org/10.1016/j. 
gecco.2019.e00683. Elsevier B.V.  

Scott, R., Hodgson, D.J., Witt, M.J., Coyne, M.S., Adnyana, W., Blumenthal, J.M., et al., 
2012. Global analysis of satellite tracking data shows that adult green turtles are 
significantly aggregated in Marine Protected Areas. Global Ecol. Biogeogr. 21 (11), 
1053–1061. https://doi.org/10.1111/j.1466-8238.2011.00757.x. 

SEDAC. Remote sensing and environmental treaties : building more effective linkage. 
Retrieved October 24, 2021, from. https://sedac.ciesin.columbia.edu/rs-treaties/bac 
kground.html. n.d.  

Shaowen, W., Michael, ⋅, Goodchild, F., 2019. In: Wang, S., Goodchild, M.F. (Eds.), 
CyberGIS for Geospatial Discovery and Innovation, vol. 118. Springer Netherlands. 
https://doi.org/10.1007/978-94-024-1531-5. 

Sherley, R.B., Ludynia, K., Dyer, B.M., Lamont, T., Makhado, A.B., Roux, J.P., et al., 
2017. Metapopulation tracking juvenile penguins reveals an ecosystem-wide 
ecological trap. Curr. Biol. 27 (4), 563–568. https://doi.org/10.1016/j. 
cub.2016.12.054. 

Shucksmith, R.J., Kelly, C., 2014. Data collection and mapping - principles, processes and 
application in marine spatial planning. Mar. Pol. 50 (PA), 27–33. https://doi.org/ 
10.1016/j.marpol.2014.05.006. 

Siddagangaiah, S., Chen, C.F., Hu, W.C., Pieretti, N., 2019. A complexity-entropy based 
approach for the detection of fish choruses. Entropy 21 (10), 977. https://doi.org/ 
10.3390/e21100977. 

Siders, A., Stanley, R., Lewis, K.M., 2016. A dynamic ocean management proposal for the 
Bering Strait region. Mar. Pol. 177–185. https://doi.org/10.1016/j. 
marpol.2016.09.028. 

Silber, G.K., Adams, J.D., Fonnesbeck, C.J., 2014. Compliance with vessel speed 
restrictions to protect North Atlantic right whales. PeerJ 2014 (1). https://doi.org/ 
10.7717/peerj.399. 

Silva, T.L., Mooney, T.A., Sayigh, L.S., Baumgartner, M.F., 2019. Temporal and spatial 
distributions of delphinid species in Massachusetts Bay (USA) using passive acoustics 
from ocean gliders. Mar. Ecol. Prog. Ser. 631, 1–17. https://doi.org/10.3354/ 
meps13180. 

Smith, M.E., Bernard, S., 2020. Satellite ocean color based harmful algal bloom 
indicators for aquaculture decision support in the southern Benguela. Front. Mar. 
Sci. 7, 61. https://doi.org/10.3389/fmars.2020.00061. 

Smith, H.R., Zitterbart, D.P., Norris, T.F., Flau, M., Ferguson, E.L., Jones, C.G., et al., 
2020. A field comparison of marine mammal detections via visual, acoustic, and 
infrared (IR) imaging methods offshore Atlantic Canada. Mar. Pollut. Bull. 154, 
111026 https://doi.org/10.1016/J.MARPOLBUL.2020.111026. 

Snape, R.T.E., Bradshaw, P.J., Broderick, A.C., Fuller, W.J., Stokes, K.L., Godley, B.J., 
2018. Off-the-shelf GPS technology to inform marine protected areas for marine 
turtles. Biol. Conserv. 227, 301–309. https://doi.org/10.1016/j. 
biocon.2018.09.029. 

Snickars, M., Pitkänen, T., 2007. GIS Tools for Marine Spatial Planning and Management. 
Sommerfeld, J., Mendel, B., Fock, H.O., Garthe, S., 2016. Combining bird-borne tracking 

and vessel monitoring system data to assess discard use by a scavenging marine 
predator, the lesser black-backed gull Larus fuscus. Mar. Biol. 163 (5), 116. https:// 
doi.org/10.1007/s00227-016-2889-8. 

Sonoki, S., Shao, H., Morita, Y., Minami, K., Shoji, J., Hori, M., Miyashita, K., 2016. Using 
acoustics to determine eelgrass bed distribution and to assess the seasonal variation 
of ecosystem service. PLoS One 11 (3). https://doi.org/10.1371/journal. 
pone.0150890. 

Stamoulis, K.A., Delevaux, J.M.S., 2015. Data requirements and tools to operationalize 
marine spatial planning in the United States. Ocean Coast Manag. https://doi.org/ 
10.1016/j.ocecoaman.2015.07.011. 

Stelzenmüller, V., Lee, J., South, A., Foden, J., Rogers, S.I., 2013. Practical tools to 
support marine spatial planning: a review and some prototype tools. Mar. Pol. 38, 
214–227. https://doi.org/10.1016/J.MARPOL.2012.05.038. 

Stokes, K.L., Broderick, A.C., Canbolat, A.F., Candan, O., Fuller, W.J., Glen, F., et al., 
2015. Migratory corridors and foraging hotspots: critical habitats identified for 
Mediterranean green turtles. Divers. Distrib. 21 (6), 665–674. https://doi.org/ 
10.1111/ddi.12317. 

Tallis, H., Levin, P.S., Ruckelshaus, M., Lester, S.E., Mcleod, K.L., Fluharty, D.L., 
Halpern, B.S., 2010. The many faces of ecosystem-based management: making the 
process work today in real places. Mar. Pol. 34, 340–348. https://doi.org/10.1016/j. 
marpol.2009.08.003. 

I. Schwartz-Belkin and M.E. Portman                                                                                                                                                                                                      

https://doi.org/10.1002/aqc.2632
https://doi.org/10.1016/j.dsr2.2015.04.016
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1016/j.biocon.2018.03.011
https://doi.org/10.1016/j.biocon.2018.03.011
http://www.policyresearch.nl
https://doi.org/10.1007/978-3-319-26971-9
https://doi.org/10.1016/j.marpol.2013.03.004
https://doi.org/10.1016/j.marpol.2013.03.004
https://doi.org/10.1002/AQC.3478
https://doi.org/10.1002/AQC.3478
https://doi.org/10.1016/j.ecolind.2017.09.025
https://doi.org/10.1016/j.gecco.2016.05.001
https://doi.org/10.1016/j.gecco.2016.05.001
https://doi.org/10.1073/pnas.1510090113
https://doi.org/10.1073/pnas.1510090113
https://doi.org/10.1038/s41586-019-1444-4
https://doi.org/10.3389/fmars.2020.00423
https://doi.org/10.3389/fmars.2020.00423
http://Www.Frontiersin.Org
https://doi.org/10.1088/1755-1315/269/1/012041
https://doi.org/10.1088/1755-1315/269/1/012041
https://doi.org/10.1016/j.ocecoaman.2019.03.001
https://doi.org/10.1016/j.ocecoaman.2019.03.001
https://doi.org/10.1016/j.marpol.2016.02.017
https://doi.org/10.1111/2041-210X.13245
https://doi.org/10.1080/09640568.2010.488100
https://doi.org/10.1002/rse2.129
https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/docs/2016-condition-report-channel-islands-nms.pdf
https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/docs/2016-condition-report-channel-islands-nms.pdf
https://nmssanctuaries.blob.core.windows.net/sanctuaries-prod/media/docs/2016-condition-report-channel-islands-nms.pdf
https://www.researchgate.net/publication/305810663_AQUO_PROJECT_-RESEARCH_ON_SOLUTIONS_FOR_THE_MITIGATION_OF_SHIPPING_NOISE_AND_ITS_IMPACT_ON_MARINE_FAUNA_-_SYNTHESIS_OF_GUIDELINES
https://www.researchgate.net/publication/305810663_AQUO_PROJECT_-RESEARCH_ON_SOLUTIONS_FOR_THE_MITIGATION_OF_SHIPPING_NOISE_AND_ITS_IMPACT_ON_MARINE_FAUNA_-_SYNTHESIS_OF_GUIDELINES
https://www.researchgate.net/publication/305810663_AQUO_PROJECT_-RESEARCH_ON_SOLUTIONS_FOR_THE_MITIGATION_OF_SHIPPING_NOISE_AND_ITS_IMPACT_ON_MARINE_FAUNA_-_SYNTHESIS_OF_GUIDELINES
https://doi.org/10.3354/MEPS11060
https://doi.org/10.1016/j.marpol.2018.11.006
https://doi.org/10.1016/j.marpol.2018.11.006
https://doi.org/10.1016/J.MARPOL.2017.05.032
https://doi.org/10.1016/J.MARPOL.2017.05.032
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellites_for_safer_seas
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Satellites_for_safer_seas
https://doi.org/10.1111/DDI.12389
https://doi.org/10.1111/DDI.12389
https://doi.org/10.1111/ddi.12611
http://blog.exactearth.com/blog/should-i-track-global-fishing-activity-with-vms-or-ais
http://blog.exactearth.com/blog/should-i-track-global-fishing-activity-with-vms-or-ais
https://doi.org/10.1016/j.gecco.2019.e00683
https://doi.org/10.1016/j.gecco.2019.e00683
https://doi.org/10.1111/j.1466-8238.2011.00757.x
https://sedac.ciesin.columbia.edu/rs-treaties/background.html
https://sedac.ciesin.columbia.edu/rs-treaties/background.html
https://doi.org/10.1007/978-94-024-1531-5
https://doi.org/10.1016/j.cub.2016.12.054
https://doi.org/10.1016/j.cub.2016.12.054
https://doi.org/10.1016/j.marpol.2014.05.006
https://doi.org/10.1016/j.marpol.2014.05.006
https://doi.org/10.3390/e21100977
https://doi.org/10.3390/e21100977
https://doi.org/10.1016/j.marpol.2016.09.028
https://doi.org/10.1016/j.marpol.2016.09.028
https://doi.org/10.7717/peerj.399
https://doi.org/10.7717/peerj.399
https://doi.org/10.3354/meps13180
https://doi.org/10.3354/meps13180
https://doi.org/10.3389/fmars.2020.00061
https://doi.org/10.1016/J.MARPOLBUL.2020.111026
https://doi.org/10.1016/j.biocon.2018.09.029
https://doi.org/10.1016/j.biocon.2018.09.029
http://refhub.elsevier.com/S0964-5691(22)00256-3/sref246
https://doi.org/10.1007/s00227-016-2889-8
https://doi.org/10.1007/s00227-016-2889-8
https://doi.org/10.1371/journal.pone.0150890
https://doi.org/10.1371/journal.pone.0150890
https://doi.org/10.1016/j.ocecoaman.2015.07.011
https://doi.org/10.1016/j.ocecoaman.2015.07.011
https://doi.org/10.1016/J.MARPOL.2012.05.038
https://doi.org/10.1111/ddi.12317
https://doi.org/10.1111/ddi.12317
https://doi.org/10.1016/j.marpol.2009.08.003
https://doi.org/10.1016/j.marpol.2009.08.003


Ocean and Coastal Management 231 (2023) 106280

16
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