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ARTICLE INFO ABSTRACT

Growing awareness of the role of marine spatial planning (MSP) in promoting sustainable development and
ecosystem-based management highlights the need to use decision-support tools, and specifically ecological
modelling tools, to consider the future impact of planning and management on the marine environment.
However, how these tools can be incorporated into planning and their expected contribution is not always clear.
Here, an Ecopath with Ecosim and Ecospace food-web model was used in a hypothetical planning process to
examine the integration of food-web tools in specific stages of MSP. The model was used to examine spatial
alternatives and management strategies for Orot Rabin coastal infrastructure facility in the Israeli Mediterranean
coast, in an attempt to assess how such facilities might promote marine conservation. The results revealed the
effect of different management protocols on the ecosystem, and provide the maximum allowable catch for
sustaining the biomass of vulnerable fish species in the area, which can be used in MSP to address specific marine
conservation goals. The model led to counterintuitive understandings regarding the management of the area. It
demonstrated that intensive development under specific management strategies may promote conservation goals
better than some management strategies directed towards ecological and recreational purposes. This study
confirms the potential usefulness of food-web models for MSP; it specifies the stages and means by which
planners can use models. Furthermore, it is suggested that tool's development should be planning-oriented and
should include more applications to serve planners who aim to promote ecosystem-based management and
marine conservation goals.

Keywords:

Marine spatial planning
Ecosystem-based management
Coastal infrastructures
Food-web modelling
Decision-support tool

1. Introduction

At the national and international level, marine conservation goals
are often addressed through marine spatial planning (MSP). The aim of
this process, which deals with allocating the uses of a space that in-
cludes marine protected areas, is to reduce conflicts between different
uses and between the various uses and the continued protection of the
marine environment [20]. However, the increasing human activity in
the marine environment challenges marine planning to adapt and find
creative solutions to potentially negative interactions between uses and
the environment, while promoting marine conservation goals and
ecosystem-based management [18,19,42]. For example, MSP attempts
to explore marine conservation opportunities beyond the boundaries of
marine protected areas (MPAs) (e.g., [24,34,44]), and even within
areas dedicated to human activity [46]. Questions remain on how to
consider and explore conservation opportunities as part of the planning
process. Decision-support tools and spatial prioritization tools are often

suggested for use in MSP, to handle multiple conflicts between human
activity and marine ecosystems, and to secure the protection of valu-
able, unique and vulnerable marine habitats and populations
[11,40,56]. At the same time, further methodological advances are
required in order to devise comprehensive MSP, in which marine con-
servation goals constitute the basis for all developments [30].
Advances in this direction include the use of ecological models as
decision-support tools to explore the effects of human activity on eco-
systems as a whole. The main advantage of incorporating such models
into planning and management procedures is that they allow users to
predict not only the cumulative impact of human activity on the en-
vironment over time and space, but also the indirect impact of man-
agement on the environment [26,33]. In addition, recent advances in
the design of food-web modelling tools has increased their diagnostic
capabilities, and the ability to account for uncertainty (e.g., [35,54]).
The significant progress in the ability of food-web modelling tools to
assess cumulative impacts on the environment led to their application
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for various purposes. Alexander et al. [1] used food-web model to ex-
amine the effect of the structure and management of renewable energy
installations on a marine ecosystem. In addition, Pastorok et al. [36]
demonstrate the importance of using ecological modelling in chemical
risk assessment. Notwithstanding, ecological modelling tools have
limitations. One of the most significant limitations of the modelling
approach to planning is the difficulty of interpreting model results for
the purpose of planning and management [12,26]. The incorporation of
ecosystem modelling results into the MSP process is still lacking.

This study focuses on a marine infrastructure area of a coastal power
station to which public access is limited; this managerial policy sup-
ports populations of highly vulnerable marine species [47]. Our as-
sumption is that the MSP process can be aided by food-web modelling.
The goal of this study was to examine how food-web modelling can be
used as part of a MSP process, to explore the possibility of promoting
marine conservation goals within an area that is subjected to intense
human impact. To this end, the marine ecosystem within the area of
Orot Rabin coastal power station was modelled and used in a hy-
pothetical MSP process. The model was used to examine the effects of
different spatial alternatives and management schemes on the marine
ecosystem.

2. Methods

Ecological modelling was incorporated into the planning process in
order to provide a means for predicting the possible effects of spatial
and temporal uses and their management on the marine ecosystem. The
process followed the Ehler and Douvere [20] step-by-step guide for
MSP. Stages selected in the planning process were identified as suitable
for considering alternatives whereby marine conservation goals can be
maintained and supported within developed marine areas (See [11]).

A food-web model of the area of the marine infrastructure in
question was developed. The area, to which public access is limited,
was found to provide a suitable habitat for several vulnerable fish
species. Based on the food-web model, hypothetical planning process
was applied, with a 15-year planning horizon. Within this framework,
different management scenarios of the infrastructure enclosure were
examined, according to the pre-set, relevant stages of the planning
process. Incorporating the model as a decision-support tool in the
planning process allowed determination of the best way to adapt the
infrastructure enclosure to serve as a multiuse area, while including
marine conservation among the added uses.

2.1. The planning process

In the MSP process, 2 of the 10 stages were identified as suitable for
examining the promotion of marine conservation goals (stages 6 and 7
in [20], see Table 1), within areas of marine infrastructure. Then a food-
web model was used to predict the effect of different spatial alternatives
and management schemes on the food-web.

2.1.1. Defining and analyzing future conditions (Stage 6 in MSP process)
This stage is the sixth of ten stages [20]. The business-as-usual
scenario (BAU) was simulated as a reference, as well as two spatial

Table 1
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alternatives, each under three management strategies. Each spatial al-
ternative represents the incorporation of a different target: (1) The
spatial alternative that prioritises 'Ecology and recreation' (ER) em-
phasises development guided by marine conservation needs, following
the conservation targets outlined by the Israel Nature and Parks Au-
thority — INPA [28], which highlight educational and recreational ac-
tivities in MPA areas; 2) The spatial alternative that prioritises ‘In-
tensive development’ (ID) emphasises development of the area for
further energy production and for the benefit of other industries that
rely on ports.

2.1.2. Preparing and approving the spatial management plan (Stage 7 in
MSP process)

Decision-support tools are often used in MSP in the seventh stage, to
examine different management scenarios [11,40]. The seventh stage of
the planning process (Table 1) was followed to examine the selected
spatial alternatives under three management strategies: exclusive, co-
operative, and inclusive management. Exclusive sectoral-management
represents operation of the area according to sector needs only. Co-
operative management represents operation of the area according to
sector needs while promoting benefits of additional sectors from the
area. Inclusive management represents operation of the area by mul-
tiple sectors, to allow maximum benefit for each sector. Thus a total of
seven scenarios were employed: two spatial alternatives under three
management strategies (=6), and the BAU scenario, which served as a
baseline, for comparing measures from each of the simulated scenarios.

The spatial alternatives and the related management strategies are
detailed in Table 2. The ER alternative focused on the natural compo-
nents of the area, choosing to exclude artificial structures constructed
for energy-production purposes, while allowing recreational activities
such as swimming, snorkeling, SCUBA diving and sport fishing. In the
ID alternative, the focus was on the construction of additional struc-
tures, to enhance production and port activities. Management strategies
adjust the activity in the area according to the level of other sectors’
involvement. The rationale for each spatial alternative and manage-
ment strategy is described in Appendix 1.

2.2. Study site

The Orot Rabin Power Station is located on the coast of the Israeli
Mediterranean Sea near the city of Hadera. It encompasses a marine
area of approximately 1.5km? and includes submerged and above-
water structures (Fig. 1). The shallow area has a depth of approximately
5m and includes an intake basin, into which seawater is pumped to
cool the power station turbines. The intake basin is bordered by
breakwaters from the west, south and partly from the north, to mini-
mize turbulence which might cause pumping disruptions. Seawater in
the intake basin is not treated in any way before uptake by the turbines,
and water flows freely in and out of the basin.

The intake basin encompasses the tugboat harbour, a dock for
military vessels and another dock for small maintenance and security
patrol boats. The coal jetty, where ships unload coal for the operation of
the power station, is the deepest area, at a depth of approximately 29 m.
The jetty is located 3 km west of the power station and from there a

Ehler and Douvere [20] stages of marine spatial planning where ecological modelling tools could be used for achieving marine conservation within areas of human

activity.

Planning stage according to Ehler and
Douvere [20]

Stage order

Stage description

Defining and analyzing future conditions Sixth

Planners project the current existing human activities over space and time and then predict future demand for

space by variety of existing and future activities. Based on these predictions, planners examine alternative future

scenarios for the area.

Preparing and approving the spatial Seventh

management plan

Planners examine management alternatives for the area and select management measures for evaluation. At the
end of this stage, planners prepare a comprehensive management plan.
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Fig. 1. Coastal infrastructures of Orot Rabin Power Station along the Israeli Mediterranean coast.

preserved specimens from The Steinhardt Museum of Natural History,
Tel Aviv University were measured. Each species’” wet weight was
estimated by weighing 10-30 specimens from each species which were
collected in area of the power station. For fish and ray species, average
wet weight was calculated from the database of Frid and Belmaker
[23]; only data from sampling points located within 100 m of the power
station's structures were included.

Biomass of all other groups was calculated based on secondary data
not directly measured in the area of the power station: Phytoplankton
biomass was calculated from measurements conducted by the IEC [27]
and the Israel Oceanographic and Limnological Research (IOLR) mon-
itoring program [29] in the area of the power station. Zooplankton
biomass was calculated from the Corrales et al. [14] model. Shark
biomass was calculated from the database of Barash [2]. Although not a
functional guild, detritus is essential component in EwE models (a
functional group in EXE terminology) and therefore is incorporated into
the model using the same currency as other functional groups. Detritus
biomass was calculated using the empirical equation from Pauly et al.
[39] and Torres et al. [53]:

log D = —2.41 + 0.954- log PP 4 0.863 log E (€D)]

Table 3

where D is detritus biomass, PP is annual primary production measured
by IOLR [29], and E is the average depth of the photic zone.

2.3.1.2. Production. Production per biomass (P/B) of each group is
equal to the sum of each species total mortality which is the sum of
fishing mortality F and natural mortality M. F is the ratio between catch
and biomass. M of each species was calculated for all fish groups
following Pauly [37] and validated by comparison to Corrales et al.
[14].

2.3.1.3. Consumption. Consumption, Q, of each species of finfish was
calculated using an empirical equation following Pauly et al. [38]:

log(%) = 6.37 — 1.5045T" — 0.168 log W, + 0.1399Pf + 0.2765Hd

(2)

where T" = 1000/mean seawater temperature, (K°), W.. is the body
weight (g) taken from Frid and Belmaker [23] surveys in the area of the
study site, Pf (apex and/or pelagic predators and/or zooplankton
feeders) equals either 1 for predators or O for all others, and Hd
(herbivores and detritivores) equals either 1 for herbivores or 0 for
carnivores.

Parameters used in Ecopath model of Orot Rabin Power Station. TL is the trophic level calculated by the model, P/B is the production per biomass per year, Q/B is the
consumption per biomass per year, P/Q is production/consumption. Bold- calculated by the model.

Functional group TL Biomass (t/km?) P/B Q/B Ecotrophic efficiency P/Q Fishery removal (t/km?/y)
1 Phytoplankton 1 32 88 0.09
2 Benthic primary producers 1 3.47 5.5 0.09
3 Zooplankton 2.05 1.2 18.3 294.41 0.95 0.06
4 Benthic invertebrates 2.35 5.13 0.77 2.58 0.93 0.30
5 Cephalopods 3.30 0.2 0.84 9.28 0.82 0.09
6 Flatfish 3.08 0.01 1.45 3 0.92 0.48 1.92E—-4
7 Rocky fish 2.97 0.12 1.00 2.95 0.98 0.34 0.045
8 Demersal fish A® 3.19 0.10 2.28 4.39 0.95 0.52 0.147
9 Demersal fish B 3.83 0.07 0.66 3.72 0.94 0.18 0.005
10 Herbivorous fish 2.00 0.11 0.82 2.37 0.81 0.34 0.013
11 Pelagic fish 3.42 0.2 1.06 2.5 0.83 0.42 0.104
12 Rays 3.58 0.18 0.28 1.29 0.43 0.22 0.021
13 Sharks 4.15 0.10 0.26 1.90 0.01 0.14 3.0E-4
14 Detritus 1 3.93 0.03

? Demersal fish feeding on invertebrates.
> Demersal fish feeding on fish.
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Table 4
Diet composition matrix for Orot Rabin Power Station food-web model.
Prey/predator 3 4 S5 6 7 8 9 10 11 12 13
1 Phytoplankton 0.7 0.3 0 0 0 0 0 0.1000 0 0 0
2 Benthic primary producers 0 0.1 0 0 0.2000 0.08 0 0.8998 0.0020 0 0
3 Zooplankton 0.05 0.2 0.15 0.02 0.0220 0.15 0 0 0.4 0 0
4 Benthic invertebrates 0 0.1 0.85 0.77 0.7001 0.654 0.276 0.0002 0.0492 0.5825 0.001
5 Cephalopods 0 0 0 0.01 0.0010 0.066 0.2 0 0.035 0.1747 0.001
6 Flatfish 0 0 0 0 0 0 0.063 0 0 9.71E-05 0
7 Rocky fish 0 0 0 0 0 0 0.1 0 0.095 0.0097 0
8 Demersal fish A® 0 0 0 0 0.0015 0 0.15 0 0.0176 0.0097 0.07
9 Demersal fish B 0 0 0 0 0 0 0.01 0 0.0439 0 0.07
10 Herbivorous fish 0 0 0 0 0.0015 0 0.1 0 0.05 0 0.07
11 Pelagic fish 0 0 0 0 0 0 0.051 0 0.08 0 0.1
12 Rays 0 0 0 0 0 0 0 0 0 0 0.01
13 Sharks 0 0 0 0 0 0 0 0 0 0 0
14 Detritus 0.25 0.3 0 0.2 0.0738 0.05 0 0 0.0006 0 0
Import 0 0 0 0 0 0 0.05 0 0.227 0.2233 0.678
SUM 1 1 1 1 1 1 1 1 1 1 1

2 Demersal fish feeding on invertebrates.
> Demersal fish feeding on fish.

For benthic invertebrates and cephalopods, consumption was cal-
culated based on the model of Corrales et al. [14], using our biomass
data. For zooplankton, consumption was estimated by Ecopath given an
ecotrophic efficiency of 0.95 based on other small nearshore area
models (e.g., [43,55]).

2.3.1.4. Diet composition. The diet of groups was calculated using diet
preferences of each species, following Corrales et al. [14]; see Table 4.

2.3.1.5. Fishing. Although it is prohibited, fishing activity does occur
within the area of the power station and therefore was incorporated in
the model. The Israel Port Authority, which enforces the prohibition,
reportedly detects minor illegal artisanal fishing activity in the area of
the coal conveyor (Port captain, personal communication, 2015).
Therefore, data from Frid and Belmaker [23] was used. The data
include a detailed listing of all species caught in the area of the power
station using both gill nets and trammel nets over a l-year survey
period. Here all the catch rates reported in the Frid and Belmaker [23]
study was used as a single fleet type. Currently there is no indication of
sport fishing taking place in the area; however, it is likely to occur
under different management strategies. Therefore, in the Ecopath
model we incorporated this fishing type with a negligible catch value
of 0.002 t/km?/y. In scenarios that allow sport fishing, fishing effort of
unit is assumed to equivalent to 0.083 t/km?/y which is 6% of the
trammel net fishing in BAU (For more details, see Appendix 2).

2.3.1.6. Model balancing. A critical stage in the development of an
Ecopath model is the stage of balancing the model. A balanced model
means that the food web (and the energy transformation within it) is
correctly and fully represented in the model. For more details, see
Darwall et al. [15] and Heymans et al. [25]. The small size of the study
area (1.063 km?) is one of the limitations of this study. To simplify the
use of the model we assume a closed model that allows feeding of
mobile groups outside the study area. Therefore, the feeding source for
some of the species, such as pelagic fish, demersal fish B, rays, and
sharks, was assumed to be outside the study area (see import value in
Table 4) and the balancing process was began by increasing the value of
the diet that these groups consume outside the area of the model. At the
next stage, a top-down strategy [25] was followed similar to that found
in previous studies that used EwE (e.g., [3,14,53]). The balanced
Ecopath model was the basis for the scenarios examined using
Ecospace.

2.3.1.7. Validation. To validate the model, fish biomass data [47] in
two areas of the power station was used: the coal jetty, where no fishing
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occurs, and the conveyor area, where illegal fishing was reported by the
Ports Authority. The time-dynamic module of EWE was operated with
varying fishing effort in the conveyor area. It was found that a fishing
effort of 15 nets per year resulted in biomass differences between these
two areas that are similar to those reported by Shabtay et al. [47]. This
result was well within the range of the fishing effort estimated by the
Ports Authority.

2.3.2. Ecospace

An Ecospace model that was based on the Ecopath and Ecosim
models was constructed. Ecospace is a spatial module that allows spa-
tial-temporal dynamic modelling. The relatively small study area en-
abled us to construct the model using high-resolution data. Grid cell
size represented an area of 10 X 10 m; spatial data, such as depth,
temperature (from [27]), and habitat type (from [47]), were assigned to
each cell.

Four habitat types were defined within the region represented by
the Ecospace model: sand, breakwaters, piles, and artificial substrate.
The first, sand, represents the areas where the bottom is sandy. The
second habitat is found in areas of the breakwaters, which are made of
boulders. The third type includes areas of habitat located on or near
steel piles of the jetty and the conveyor. Each pile is about 4m in
diameter; they are located in pairs, every 40 m along the conveyor, and
every 20m along the jetty. The last habitat type, artificial substrate,
consists of areas where various artificial structures are present such as
concrete blocks, steel nets, and steel cables. Depth, temperature and
habitat data were mapped using ArcGIS 10.2 and imported it into
Ecospace (Fig. 2).

2.4. Using Ecospace for MSP

In Ecospace, spatial alterations of the existing state (sixth stage of
MSP) included the addition or subtraction of hard substrate elements
such as breakwaters, conveyor piles, and other artificial structures.
Management scenarios (seventh stage of MSP) included fishing effort
alterations, spatial fishing restrictions, seasonal variation in fishing, and
fouling communities’ habitat preferences. Changing biomass of benthic
primary producers and benthic invertebrate groups was required to
simulate an increase in fouling communities’ biomass as a result of
green engineering, when it was not accomplished through the usage of
habitat preferences in Ecospace. This required changes to biomass of
the fouling communities in Ecopath. Changing biomass values of the
groups caused only minor changes to other model parameters, namely
to the zooplankton group's consumption value, which decreased by
14%.
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Fig. 2. Depth, temperature and habitat data mapped using ArcGIS 10.2. A. Sea surface temperature (SST) at the Orot Rabin Power Station in April 2016. B.
Depth at Orot Rabin Power Station. C. Habitats in the area of Orot Rabin Power Station as used in Ecospace.

Changes in the biomass of demersal fish B and pelagic fish were
used as an indication of the effect of each scenario on the marine en-
vironment, because both groups include species characterized by high
vulnerability. In addition, the average trophic level, based on the
trophic level in each cell of the grid, was used as an ecological in-
dicator, to describe changes to the ecosystem (see [13]). Target groups'
biomass changes between the different scenarios were tested using
ANOVA. The data were normally distributed and the variances were
equal so no data transformation was needed. All statistical analyses
were performed using R software [45].

3. Results
3.1. EwE Ecopath model

The food-web flow chart (Fig. 3) is an output from Ecopath and is
based on the information used to construct the model. It demonstrates
(1) that benthic invertebrates have a significant role in the food web,
and (2) that primary producers make up most of the biomass in the
area. Demersal fish B and pelagic fish groups were used in our study to

Sharks
o
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o
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b Rays

o
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Zooplankton
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. | ¢
Benthic primary producers
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Fig. 3. Flow diagram of the Ecopath model for Orot Rabin Power Station. Circle
size and line width are proportional to the group's biomass, and magnitude of
the trophic flow, respectively.
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estimate the contribution of each scenario to the achievement of marine
conservation goals. The flow chart demonstrates the role of these
groups as predators situated in a relatively high trophic level and also
their significant contribution as a food source for apex predators.

3.2. MSP scenarios

The scenarios were assessed in terms of the differences in the bio-
mass of demersal fish B and pelagic fish in each scenario relative to the
BAU. Different fishing efforts in each scenario enabled us to estimate
the minimal and maximal catch that would result in a decrease, and in
an increase, of the biomass of each species-group, respectively. Changes
in sport-fishing catch seemed to especially affect the biomass of the
pelagic fish group. The maximum values of catch expected to allow an
increase in pelagic fish biomass over a period of 15 years is 0.334 t/
km?/y (0.332t/km?/y and 0.002 t/km?/y (for trammel nets and sport
fishing, respectively)). The minimum level of catch that would lead to a
decrease in pelagic fish biomass over a 15-year period is 0.415 t/km?/y
(0.332 t/km?/y and 0.083 t/km?/y (for trammel nets and sport fishing,
respectively)). In total, the three scenarios were expected to lead to a
similar increase in biomass of the pelagic fish group: the ER alternative
with exclusive and with inclusive management strategy; and the ID
alternative with exclusive management. The ER alternative with the
cooperative management strategy resulted in the largest decrease in
fish biomass (Fig. 4).

A fishing catch of 0.334 t/km?/y (0.332 t/km?/y and 0.002 t/km?/y
for trammel nets and sport fishing, respectively) was the maximal catch
expected to cause an increase in demersal fish B group's biomass. A
fishing catch of 0.08 t/km?/y (0.0664 t/km?/y and 0.016 t/km?/y for
trammel nets and sport fishing, respectively) was the minimal catch
expected to cause a biomass decrease in the group's biomass. The ID
alternative with the exclusive management scenario was the only sce-
nario that resulted in a biomass increase of the demersal fish B group,
while all other scenarios resulted in biomass decrease of the group
(Fig. 5).

Aiming to benefit both species-groups’ biomass, the scenario which
would provide the greatest biomass increase for both groups was
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determined. The scenario of ID alternative with exclusive management,
is the only scenario that is expected to result in an increase in the
biomass of both, pelagic fish and demersal fish B (see Figs. 4, 5). The ER
alternative with exclusive and inclusive management resulted in a
biomass increase of only the pelagic fish, while all other scenarios
caused a decrease to both groups' biomass.

Despite the expected biomass increase of demersal and pelagic fish
groups, the ID alternative with exclusive management is expected to
cause a decrease in zooplankton, flatfish, and herbivorous fish groups’
biomass and especially to the benthic invertebrates group, which is
expected to demonstrate a biomass increase in all other scenarios. The
scenario of ER alternative with cooperative management, which is ex-
pected to result in the greatest decrease in the biomass of demersal and
pelagic groups is also expected to result in significant decrease in the
biomass of cephalopods, flatfish, demersal fish that feed on in-
vertebrates, rays, and sharks. These groups’ biomass is expected to
decrease to a lesser extent also in the ID alternative with inclusive
management scenario.

[}

In addition to effects on species-groups’ biomass, the mean trophic
level (TL) of the food web was examined, as an indication of the state of
the ecosystem. The highest mean TLs were obtained in the scenarios of
ID alternative under exclusive management and under cooperative
management. All other scenarios resulted in a relatively similar mean
TL of the BAU along 15 years (Fig. 6). The spatial pattern of the TL in
the area of the power station in all scenarios is presented in Fig. 7. In all
scenarios, the highest trophic level was observed around artificial
structures, conveyor piles and breakwaters. Fishing restriction affected
the spatial distribution of trophic levels more moderately.

4. Discussion

Our prime goal of this study was to examine how food-web models
can be integrated into the MSP process to enhance ecosystem-based
management and to help achieve marine conservation goals in areas
subject to intense human use. Specifically, the use of EWE was explored
in MSP that considers conservation opportunities within infrastructure
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Fig. 6. The relative mean monthly TL in the Orot Rabin Power Station over the
entire simulation period (15 years). The values are relative to the BAU scenario.

areas where public access and fishing is limited or prohibited.

The advantage of using quantitative and qualitative decision-sup-
port tools in the MSP process to better address environmental issues is
well recognized. Coleman et al. [11] describe the possibilities and ad-
vantages of using decision-support tools in MSP. They conclude that the
ability of these tools to develop and compare alternative scenarios is a
major strength. Nonetheless, in this study, the construction of a food-
web model required resources such as time, data, and knowledge of the
modelling software. Similarly, Pinarbasi et al. [40] have shown that
decision-support tools, including food-web modelling, are being used
for the sixth and seventh stages of MSP mostly by scientists and not by
planners. Stelzenmdiiller et al. [50] claim that often, the direct use of
decision-support tools for MSP by planners is unlikely, as these tools are
highly specialized and are more suitable for use by scientists. Therefore,
it appears that the use of EWE in MSP for large regions with multiple
users and complex interactions is viable if data and knowledge re-
sources are readily available to the planning team, or if a food-web
model already exists for the area in question and is accessible to the
planners.

Alternatively, food-web models could be used in planning with
fewer resources, to address specific issues, such as determining the
benefits of allocating a space for a specific use or exploring the optimal
integration of specific uses. Filgueira et al. [21], for example, suggested
that ecosystem modelling, specifically physical-biogeochemical models,
be used in MSP to optimally locate shellfish aquaculture. More recently,
Fretzer [22] suggested that EWE food-web model could be used to as-
sess the environmental impact of terrestrial projects which might have
negative impacts on the environment. As a sequel to these findings, the

Exclusive

Cooperative
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results of the current study demonstrate that food-web modelling can
be used in MSP to promote marine conservation goals [46].

In the scenarios examined in this study, an attempt was made to
reflect the variable aspects of managing an infrastructure site and re-
gion, taking into account the site's primary use and the different sectors
involved in its management. Here, the main focus was on the effects of
fishing, and substrate type and abundance on the ecosystem. However,
food-web models provide means for incorporating many variables, in-
cluding human activity variables (e.g., [32,52]). These variables would
likely be of concern when implementing a marine spatial plan, thus
reflecting the human impact on the ecosystem more accurately.

The study presented here demonstrate how EwE, primarily designed
as a fisheries management decision-support tool, can be used for other
purposes. Yet, acknowledging the divergence from their original pur-
pose, the use of food web models for MSP should be conducted cau-
tiously [31,48]. Therefore, planners wishing to use food-web models to
explore conservation options within areas of human activity, should be
mindful about: 1) setting response and forcing function types and va-
lues to describe affiliation of species to human activities, and, 2) ex-
amining areas of a certain human activity which does not fully overlap
and represent the whole habitat of a target species [25]. Increased use
of food-web models for planning will make it increasingly easier for
new projects to rely on data from previous projects, which in turn, may
motivate software developers to further adjust the models for use in
MSP.

Once the Ecopath model was constructed, Ecospace was successfully
used in our case study for the MSP stages listed in Table 1. Spatial
alternatives which differed from the existing state were successfully
implemented, readily considered and could perform directly in Eco-
space, eliminating the need to import them from GIS-based software.
Management strategies were readily examined with Ecospace when it
included alterations in fishing efforts and fishing restrictions. However,
other elements of the management which were not directly related to
fishing were more difficult to examine, because they would have re-
quired additional changes to the Ecopath model. Theoretically, each
aspect of management could be incorporated as a fleet in the Ecopath
model or as a driving function in Ecospace. Nonetheless, planners can
only examine those management strategies that have been defined and
included in the earlier modelling stage.

An additional stage of MSP which could benefit from the use of
ecological modelling is the 10th stage, which deals with monitoring and
evaluating performance (See [20]). This stage formulates the mon-
itoring scheme that will be used to evaluate the plan and later to adapt
the plan and/or management accordingly. The use of decision-support
tools for this stage of planning is rare and is mainly conducted by the
authorities of specific sectors and not by planners [40]. However, based
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Fig. 7. Spatial distribution of trophic level in the area of Orot Rabin Power Station at the end of the 15-year scenarios.
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on the examination of the management scenarios, we note that changes
in biomass of groups or species can be examined directly using Ecosim
or Ecospace and does not require construction of a new Ecopath model,
complex calculations, or indirect conclusions based on other variables.
In Ecosim and Ecospace, evaluation of the future state could be com-
pared with expected results, but it could also be incorporated as a time
series, to better forecast changes to the ecosystem in future years and to
adjust the plan based on unexpected changes to the ecosystem.

The use of the food-web model of Orot Rabin Power Station in our
hypothetic planning process enabled us to examine fine changes to the
ecosystem, which were caused as a result of spatial and management
alterations. The results suggest that the demersal fish B group is highly
sensitive to sport fishing, which is currently not practiced in the area.
The demersal fish B group includes three species of Epinephalus genus
that are endangered according to the International Union for
Conservation of Nature (IUCN) and hence are targeted for marine
conservation efforts along the Israeli Mediterranean coast (see [47]).
The results of the model demonstrated that also the pelagic fish group is
sensitive to fishing if it were to exceed the catch rate that is currently
assumed in the area. It is suggested that the predicted impact of altered
fishing rates on the two species-groups indicates that the area of the
power station, with its artificial structures and access prohibition,
functions as a protective island in a heavily exploited environment
[47], and that scenarios in which the management significantly differ
from BAU may not contribute to conservation efforts for these groups
Using the model made it possible to demonstrate in quantitative terms
both the great value that this small area holds for marine conservation
and the beneficial effects of its current management. Furthermore, the
model demonstrated that even if the area continues to be developed and
managed for energy production purposes, these beneficial effects on
marine conservation are likely to remain stable.

The use of EWE also revealed the significant impact of management
on the ecosystem, demonstrating that in both of the spatial alternatives
(ER, and ID), exclusive sector management is expected to be even more
beneficial for marine conservation purposes than cooperative manage-
ment. Cooperative management is promoted in MSP as mitigating and
compromising and often results in allocation of multiuse areas [16,18].
In addition, cooperative management may indirectly promote marine
conservation through enhancing sectors’ commitment to common goals
pertaining to marine environmental protection [4,5,10,57]. Yet, the
results of this study, suggest that exclusive management of a sector that
strictly prohibits fishing in its area succeeds in enhancing the average
trophic level of the area and maintaining or increasing biomass of
conservation-targeted species. This was observed even in the scenario
of exclusive management of the area under intensive development,
whereby the prevalence of fouling groups considered detrimental to
benthic primary producers and benthic invertebrates (which, as shown
in Fig. 3, constitute an important component of the ecosystem) de-
creased by 50% (see Table 2 and Appendix 1). Therefore, it is suggested
that, counterintuitively, exclusive management of a sector, even if not
fully committed to marine conservation, may contribute to conserva-
tion of specific species. Hence, the planning process should be ex-
amined and assessed on a case-to-case basis, which can be done effec-
tively and efficiently using ecological modelling tools, as shown.

5. Conclusions

Food-web models can be successfully incorporated into MSP pro-
cess. The use of EwWE, and specifically Ecospace, the spatial module of
EwE, highlights the advantages of incorporating a food-web model into
the MSP process. Planners may use food-web models in the sixth and
seventh stages of MSP to explore the effects of spatial and management
alternatives on the marine ecosystem. Moreover, food-web models can
be used in planning, to explore the effect of management on groups
targeted for conservation and on other ecological indicators, such as
average trophic level in the area of the plan. The use of a food-web
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model in a MSP process can serve to mitigate the negative impacts of
human activity on the marine environment, using quantitative terms to
help identify the human activity management strategy that would be
most beneficial for the area's ecological conservation. Supporting spe-
cific stages in the MSP process through the use of such models may
promote science-based and ecosystem-based planning and manage-
ment. In addition, the use of EwE in this study demonstrates how to
perform detailed assessments of the plan's expected impact on the
marine environment. However, effective use of this modelling tool for
planning purposes requires constant monitoring and subsequent ad-
justments of the management conditions.

The use of food-web models make it possible to consider and eval-
uate nearshore marine infrastructures’ contribution to marine con-
servation goals. The use of ecological modelling to examine the effect of
infrastructure management on the marine environment can help define
(in quantitative terms) the ecological advantages that a particular in-
frastructure provides, thereby leading to its eventual designation as an
environmentally valuable area. Thus, ecological modelling may present
marine spatial planners with unexpected opportunities for promoting
marine conservation, subsequently resulting in creative spatial dis-
tribution of human activities in the seascape.

Food-web models are not, however, ‘ready-to-use’ tools for plan-
ning. Such models do not deliver complete solutions, but rather they are
the starting point for deliberation and require resources such as
knowledge, data, and time, to be effectively integrated in the planning
process. When these resources are scarce, food-web models could be
used to examine issues in specific marine infrastructure enclosures, as
presented in this study. These tools could be further developed. A va-
luable addition, for example, would be the incorporation of prioritiza-
tion features, to allow planners to examine spatial alternatives based on
the goals of the plan (e.g., [33]). Such software developments, oriented
toward planning or management beyond fishing management, could
provide an important contribution to marine conservation.
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